SIMULATION OF A TRANSIENT HEAT-CONDUCTION PROCESS

I. M. Maslennikov, R. I. Batyrev, UDC 532.2.02:681.332
and B. F. Zaretskii

A method is described of simulating a transient heat-conduction process on a general-pur-
-pose analog computer. For illustration, the problem of optimally heating a polymer film
has been solved by this method.

The transmission of thermal energy through various kinds of walls is in many industrial applications
effected by a transient mode of heat conduction. Thus, there arise problems of optimization.

One very often encounters problems in temperature regulation, which in many ways determines the
product guality, and reduces them to that of simulating the object through which transient heat conduction
takes place while it interacts with the control device., The simulation process reveals the optimum regula-
tion modes and determines the optimum parameters of the automatic control system (ACS). Such problems
are solved with the aid of analog computers (AC) [1, 2].

Analog-computer simulation of general transient heat-conduction processes and the necessity of con-
sidering a three-dimensional temperature field give rise to various difficulties [3] involved with the analog
representation of partial differential equations with variable boundary conditions and with the resulting
transcendental transfer functions dependent on the boundary conditions of a given problem. In this study
we will consider one possible method of overcoming these difficulties.

We consider the problem of transient heat conduction through an infinitely large plane wall:
d0(¢; Fo 0% Fo)

dFo oE?
Fo>0; o<t L.
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with the initial and the boundary conditions
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Quantities ¢ and g, in Egs. (3} and (4) are the referred thermal fluxes on the wall surfaces:

(FO) =~y (FO) — B[00, Fo) 0, ol ®)
0,(F0) — — g3, (Fo) — Bi, [6(1; Fo) — 0, (Fo)l. 6
A’ .

We apply the Laplace transformation to Eqs. (1)-(6) with respect to Fo [4]. The transform functions
will be deneted by capital letters. Solving the transform equations with the constraints will yield

O p) =W, (& PQP) +W,(E p) Q&) (7)
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Fig. 1. Structural diagram of a model.
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Let us now examine the structure of finctions @ and Q,
Q) == Qu () —BLIO O p—6, (). (10)
With (7) taken into account, we have
Qo) = "}%"Qu (p) — Biy W, (0; ) Q (P) + W, (0; P)Qy(P)— 8, (). (11)
For @, we have, analogously,
Q, (p) = »i— Qu (p) — Bi, (W, (1; p)Q, (p) + W, (1 p)Q;(p) —Bu(0)]- (12)

On the basis of Egs. {7), (11), and (12), we design a structural diagram (Fig. 1) of a model which
combines operators and transform functions in the form (8) and (9).

The form of the transfer functions does not depend on the specific conditions of the problem and is
deter mined only by the wall geometry.

The structure of a model depends on the boundary conditions. Boundary conditions of the third kind
result in feedback coupling at the surfaces and in transfer functions representing the interaction between
processes at these surfaces.

In order to make an analog-computer simulation of the process feasible, we have expanded the
transcendental transfer functions into series with respect to their poles:
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The gain coefficients in the expansion terms represent a fast decreasing (proportionally to n?) alter-
nating series, which means that little accuracy is lost by terminating it.

For problems with Bi = 1 it is sufficient to terminate the series after n = 1; for problems where 1
< Bi <, n =3 will yield an accuracy of 5%.

If it becomes necessary to improve the accuracy of the solution, then one includes more terms of
the series in the calculation, It is noteworthy that the time constants in the first-order terms of these
expansions are independent of £, As a consequence, switching from one section (of £&-values) to another
involves only a change of respective gain coefficients. The gain coefficients of W; and W, differ in sign
only. All this simplifies the analog-computer design of a model.

Thus, four integrating networks are needed for the representation of expansion terms, and 2n net-
works are needed for the representation of n terms. The correctness of the analog-computer model and the
accuracy of the obtained solution are checked against the solution to a control problem with bowmdary con-
ditions of the third kind and by matching the results against the curves given in Lykov's book ],

An analogous problem is solved for a cylindrical wall:

00( Fo) _ #0( Fo) | 1 30( Fo)

dFo oE? £ O (15)
Fo>0; &< E<E,

ﬂ%@ + g, (Fo) =0, (16)

"—6—%—;"’ — 4, (Fo) =0, (17)

43 (Fo) = %453 (Fo) — BLIB (5; Fo) —0, (Fo), (18)

9:(F0) = &gy (FO) — By [0 (; Fo) — ,(Fo)]. (19)

The structural schematic diagram of this model is analogous to the previous one. The basic trans-
cendental transfer functions and their series expansions are shown in Table 1.

As an example, we will now consider the problem of optimally heating a polymer film during its
orientation. Prior to the orientation process, such a film is heated by passing it over a set of rollers
sequentially at a constant velocity (Fig. 2a).

The number of rollers, their diameter, the contact angle, the velocity, and the film thickness are
usually kmown or are determined by the machine design parameters and by the requirements of the specific
technological process. The conditions of heat transfer between roller and film are also usually known. It-
is required to determine the temperature of the rollers, within imposed limits, which will ensure the
minimum sum of all their temperatures at a given heating wniformity. This is equivalent to minimizing the
energy losses and the degree of crystallization due to heating, the latter causing a deterioration of the film
quality.

The problem here will be formulated analytically, The object is described by Eq. (1) with the bound-
ary conditions

00 (0; ,
'—’(—agio)— — ¢(Fo) Bi[0,(Fo) — 8 (0; Fo)] =0,
(20)

26_%.;10) =+ 7,(Fo) Bi [6,(Fo)—8 (1; FO)j:O,

Here v; and v, are step functions of the Fourier number, equal to 1 or 0 depending on the number of rollers
with which the film is in contact at a given instant of time: y; #v,. A switching of v and v, corresponds
to a pass of the film from one roller to another. The roller temperature 6; is then also switched.
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Fig. 2. a) Schematic diagram of film passage over rollers; b) schematic dia-
gram of problem simulation on an analog computer.

Fig. 3. Schematic block diagram of the algorithm.

According to the number of rollers, there are n time intervals

0 3
/‘7<> determined by the roller radius, the contact angle with the film, and
“0 f the velocity of film travel:
/ V Fo,= o2t ,
62
(21)
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Fig. 4. Optimum heating of a It is required to determine now
film. Numbers at the curves re- min 2 6, (22)
fer to the respective values of 7
£-0, °C. under conditions of

0<6,<0,,. (23)

Here 6, is the maximum allowable roller temperature, above which the film may stick to the roller.

I= j [0(&; Fo,) — 6%t < e. (24)
0

Here ¢ is a small quantity which determines the allowable temperature deviation within a film section upon
exit from the heating zone at the final instant of time Fok.

The problem was solved on a model MN-14 analog computer (Fig. 2b). The object, described by
Egs. (1), (20), and (21), was simulated according to the method shown here., The time~interval unit (TIB)
of the analog computer switched the boundary conditions 1 and 2 at the instants of time Foj defined by Eq.
(21). The functional (24) was replaced by a sum of terms at five points £ =0, 0.25, 0.50, 0.75, 1.0:

I'="% 18(Em Fo)—0" (25)
m=1
The problem was reduced to finding the conditional minimum of a multivariable function by methods
of nonlinear programming as, for instance, the gradient methods [5]. Tracking the minimum (22) was re-
placed by tracking the minimum of sum (25). In order to ensure finding a solution to the given problem,
however, the computation steps following the determination of the gradient components

A, = AL (26)
A8,



TABLE 2. Optimum Heating Mode

y 0 8(&; Foy) for |
oy of -7 0 . I ze.
01, °C{0s, °C 8. C1 00, °C) 0,25 0,5 0,75 1.0 ‘ ' L
0 ‘ 58 60 51 ‘50,5 l 49,8 49,8 50,3 k 50,6 l 0,78 { 169

were made inversely proportional to the gradient components:

o — o'~ (27)
This made it possible to approach I, j, with the maximum temperature decrease at those rollers which
least affected the value of I. While [, ;, was reached under the limiting conditions of the problem, there-
fore, the minimum of (22) was reached at the same time, A block diagram of the algorithm is shown in
Fig. 3. The search for I, j, began from the last roller along the film route. A temperature close to the
rated film temperature was specified on this roller, namely 6; + 1°C. A solufion for the given conditions
was obtained on the analog computer and the temperature at the center of the film section

0(0.5; Fo;) > 8; —0.5°C (28)

was checked. Here x0.5°C was the permissible temperature deviation from the specified level. When in-
“equality (28) was found to be satisfied, then Ijy;, was found by the method (26), (27) and the problem was
considered solved. When inequality (28) was found not to be satisfied, then the second roller at temperature
6m was hookedonandEgs. (1), (20) were solved on the analog computer. Inequality (28) was checked again
and, if it was found not o be satisfied, the next roller at temperature 6, was hooked on. This procedure
was repeated until the addition of another roller for heating the film made inequality (28) hold true. This
preliminary search ensured an exit into the zone of Imin. The procedure (26), (27) was then used for the
final determination of the temperatures of rollers which would yield the solution to the original problem.

For the case of four heating rollers in a machine with a 0.002 m (2000 p) thick polyethylene-tere-
phthalate film passing at a velocity of 12 m/min over the rollers with a m-radians (180°) contact angle,
this method yielded a solution in 16 min, A technician performed the logic operations, changed the tem-
peratures of rollers, and read the output data on a digital voltmeter. The rated film temperature was 6¢
=50°C, Oy = 60°C, t) =20°C, € =1,

a=8.10%m’/sec; A = 0.141 W/m-deg; Bi = 16.5; R=0.2 m,

Curves of the film temperature versus the Fourier number are shown in Fig. 4 for § =0, 0.5, and
1.0 with the optimum temperatures of rollers. The temperatures of rollers, the temperatures at five points
on a film section at the end of the heating process, the values of I and of Z6; are all given in Table 2.

The described procedure for solving optimization problems in the area of film heating has been in~
troduced in industrial plants for the production of biaxially oriented polymer films and has made it feasible
to improve the physicomechanical properties of such films.

NOTATION
6 =ttty
6y =ty
0y =1ty—t4
t is the film temperature;
ty is the initial film temperature;
L7 7 are the temperatures of the media where Newtonian heat transfer occurs at the respective
wall surfaces;
tE=x/1 is the dimensionless coordinate;
b is the space coordinate;
l is the wall thickness;
Fo =at/1? is the Fourier number;
a is the thermal diffusivity;
T is the time coordinate;
A is the thermal conductivity;
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is the Biot number;
is the heat-transfer coefficient;
is the Laplace transformation operator; in Egs. (15), (16), and (17):

is the inside radius of cylindrical wall;
is the outside radius of cylindrical wall;

is the temperature of i-th roller along the film travel contact angle between film and roller;
is the radius of roller;

is the velocity of film travel;

is the rated film temperature;

is the temperature of i-th roller on the k-th step of tracking the minimum;
is the constant,
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